A classification of locally semicomplete digraphs
نویسندگان
چکیده
In [19] Huang gave a characterization of local tournaments. His characterization involves arc-reversals and therefore may not be easily used to solve other structural problems on locally semicomplete digraphs (where one deals with a fixed locally semicomplete digraph). In this paper we derive a classification of locally semicomplete digraphs which is very useful for studying structural properties of locally semicomplete digraphs and which does not depend on Huang’s characterization. An advantage of this new classification of locally semicomplete digraphs is that it allows one to prove results for locally semicomplete digraphs without reproving the same statement for tournaments. We use our result to characterize pancyclic and vertex pancyclic locally semicomplete digraphs and to show the existence of a polynomial algorithm to decide whether a given locally semicomplete digraph has a kernel.
منابع مشابه
A classification of arc-locally semicomplete digraphs
Tournaments are without doubt the best studied class of directed graphs [3, 6]. The generalizations of tournaments arise in order to extend the well-known results on tournaments to more general classes of directed graphs. Moreover, the knowledge about generalizations of tournaments has allowed to deepen our understanding of tournaments themselves. The semicomplete digraphs, the semicomplete mul...
متن کاملLOCALLY SEMICOMPLETE DIGRAPHS WITH A FACTOR COMPOSED OF k CYCLES
A digraph is locally semicomplete if for every vertex x, the set of in-neighbors as well as the set of out-neighbors of x induce semicomplete digraphs. Let D be a k-connected locally semicomplete digraph with k ≥ 3 and g denote the length of a longest induced cycle of D. It is shown that if D has at least 7(k− 1)g vertices, then D has a factor composed of k cycles; furthermore, if D is semicomp...
متن کاملMinimum Cost Homomorphism Dichotomy for Locally In-Semicomplete Digraphs
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). In the minimum cost homomorphism problem we associate costs ci(u), u ∈ V (G), i ∈ V (H) with the mapping of u to i and the cost of a homomorphism f is defined ∑ u∈V (G) cf(u)(u) accordingly. Here the minimum cost homomorphism problem for a fixed digraph H , denoted by MinHOM...
متن کاملThe Path Partition Conjecture is true in generalizations of tournaments
The Path Partition Conjecture for digraphs states that for every digraph D, and every choice of positive integers λ1, λ2 such that λ1 + λ2 equals the order of a longest directed path in D, there exists a partition of D in two subdigraphs D1,D2 such that the order of the longest path in Di is at most λi for i = 1, 2. We present sufficient conditions for a digraph to satisfy the Path Partition Co...
متن کاملArc-Disjoint Paths in Decomposable Digraphs
4 We prove that the weak k-linkage problem is polynomial for every fixed k for totally Φ5 decomposable digraphs, under appropriate hypothesis on Φ. We then apply this and recent results 6 by Fradkin and Seymour (on the weak k-linkage problem for digraphs of bounded independence 7 number or bounded cut-width) to get polynomial algorithms for some class of digraphs like quasi8 transitive digraphs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 167-168 شماره
صفحات -
تاریخ انتشار 1997